Matematica Teoria dei Numeri
I Numeri Primi e la loro Distribuzione (II) – I Contributi di Eulero e le Congetture di Legendre e Gauss
Nell’articolo precedente abbiamo illustrato due risultati importanti sulla distribuzione dei numeri primi: \[ \begin{array}{l} \displaystyle\lim_{x \to \infty}\pi(x)=\infty \\ \sum\limits_{p}{}\dfrac{1}{p}=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{11}+ \cdots=\infty \end{array} \] dove \(\pi(x)\) è la funzione che conta il numero dei primi che non superano \(x\). Il primo risultato è già presente negli ‘Elementi’ di Euclide, mentre il secondo Leggi tutto…