La Teoria dell’Informazione – Il Primo Teorema di Shannon

La nascita della Teoria dell’informazione può essere fatta risalire al \(1948\), l’anno della pubblicazione dell’articolo ‘A mathematical theory of communication‘ di Claude Shannon (1916-2001 ). L’opera di Shannon è stata fondamentale per lo sviluppo della tecnologia digitale di trasmissione dei dati sulle reti di computer e sulla rete globale Internet. Leggi tutto…

Numeri Algebrici e Trascendenti – La Costante di Eulero e il Numero Pi Greco

In un precedente articolo di questo sito abbiamo visto che l’insieme dei numeri reali \(\mathbb{R}\) può essere decomposto in due sottoinsiemi disgiunti: i numeri razionali e i numeri irrazionali. In questo articolo vedremo una diversa suddivisione di \(\mathbb{R}\), altrettanto importante: i numeri algebrici e i numeri trascendenti. 1) I numeri Leggi tutto…

I Numeri Irrazionali, il Numero di Eulero e il Numero Pi Greco

L’insieme dei numeri reali \(\mathbb{R}\) è la base sulla quale sono costruiti i principali settori dell’analisi matematica classica: il calcolo differenziale e integrale, le equazioni differenziali, il calcolo delle probabilità, ecc. Come è noto l’insieme di numeri reali è costituito da due grandi sottoinsiemi: l’insieme dei numeri razionali \(\mathbb{Q}\) l’insieme Leggi tutto…

Pascal, Fermat e la nascita del Calcolo delle Probabilità

La nascita della probabilità classica può essere fissata nel secolo XVII, motivata in particolare dall’esigenza di risolvere problemi relativi al gioco d’azzardo. Già nel secolo precedente alcuni studiosi, in particolare Cardano, avevano dato un contributo importante per calcolare le probabilità nei casi più semplici. Tuttavia solo nel secolo successivo Pascal Leggi tutto…

Le Serie di Lambert, la Funzione Aritmetica r(n) e l’Integrale di Probabilità di Gauss

In questo articolo studieremo alcune proprietà delle serie di Lambert. Quindi, mediante la serie di Lambert relativa alla rappresentazione dei numeri interi come somma di due quadrati, calcoleremo il valore dell’integrale di probabilità di Gauss. 1) Le funzioni generatrici di Dirichlet Ricordiamo brevemente alcune proprietà delle funzioni generatrici di Dirichlet. Leggi tutto…